Caffeine Alters Skeletal Muscle Contraction by Opening of Calcium Ion Channels
نویسنده
چکیده
The aim of this study was to investigate the effect of caffeine on the amplitude and rate of skeletal muscle contraction using frog sciatic nerve-gastrocnemius muscle model. Caffeine is a xanthine alkaloid whose use is widely unregulated. It is taken as a central nervous system stimulant in various foods and drinks. The effect of caffeine on skeletal muscle contraction and a possible elucidation of its mechanism of action were investigated. The sciatic nerve-gastrocnemius muscle preparation of the frog mounted on a kymograph was utilized. Varying doses of caffeine was added to the organ bath at 5, 10, 15, 20 and 25 mg/mL and its effect on skeletal muscle contraction was studied. The effects of caffeine preceded by administration of acetylcholine, atropine, nifedipine, magnesium chloride and calcium gluconate at 25 mg/mL were also studied. A dose dependent increase in skeletal muscle contraction (25.25±0.48, 49.00 ±1.23, 52.38±2.58, 59.25±1.11 and 68.50±0.87 mV; p<0.05) was observed on administration of increasing doses (5, 10, 15, 20 and 25 mg/mL, respectively) of caffeine respectively. While a significant reduction (0.90±0.04 mV) and increase (77.50±1.56 mV) in strength of contraction was observed on administration of nifedipine and calcium gluconate respectively. Administration of magnesium chloride caused a significant decrease in the strength of contraction (28.25±5.01) as compared to control. However, there was no significant difference in the contraction period and relaxation period between the treatment groups. The findings imply that caffeine increases skeletal muscle contraction and suggests it exerts the effect through increasing calcium ion release.
منابع مشابه
The effect of caffeine on excitation-contraction coupling in skeletal and smooth muscle.
1. For cockroach skeletal muscle, 2 mM caffeine considerably lowered the mechanical threshold without affecting the membrane potential. Constractures were induced by 8-10 mM caffeine. 2. In rat ileal smooth muscle, 1-10 mM caffeine inhibited spontaneous contractile behaviour, abolished spike activity and reduced KCl-induced contracture tension. 3. Enhanced spike activity associated with the KCl...
متن کاملCaffeine-induced Release of Intracellular Ca2+ from Chinese Hamster Ovary Cells Expressing Skeletal Muscle Ryanodine Receptor
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation-contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the fu...
متن کاملGestational hypothyroidism-induced changes in L-type calcium channels of rat aorta smooth muscle and their impact on the responses to vasoconstrictors
Objective(s): Thyroid hormones play an essential role in fetal growth and maternal hypo-thyroidism which leads to cardiovascular deficiency in their offspring. Considering this, we intended to investigate the impact of gestational hypothyroidism on offspring vascular contractibility and possible underlying mechanisms. Materials and Methods: Hypothyroidism was induced in female rats by administ...
متن کاملHow is SR calcium release in muscle modulated by PIP(4,5)2?
Ion channels are embedded in the lipid bilayer of cell membranes; therefore, it is not surprising that their functions can be modulated by membrane phospholipids and their metabolites. Over the last decade, a number of ion channels—including multiple types of potassium channels, voltage-gated calcium channels, and transient receptor potential channels—have been shown to be modulated by phosphol...
متن کاملHow is SR calcium release in muscle modulated by PIP ( 4 , 5 ) 2 ? Bernhard
Ion channels are embedded in the lipid bilayer of cell membranes; therefore, it is not surprising that their functions can be modulated by membrane phospholipids and their metabolites. Over the last decade, a number of ion channels—including multiple types of potassium channels, voltage-gated calcium channels, and transient receptor potential channels—have been shown to be modulated by phosphol...
متن کامل